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Hydrodynamic Instability 
 
Definition: A mean flow field is said to hydro dynamically unstable if a small 
perturbation, introduced into the mean flow, grows spontaneously by extracting energy 
from the mean flow. 
Classification of hydrodynamic instability: 
Categorization of hydrodynamic instability may either be based on the state of the mean 
flow or on the mode of perturbation introduced. 
Based  on the former, hydro dynamic instability may be  dynamic or static according as 
the mean flow is there or not.  While discussing Barotropic instability, Baroclinic 
instability or Inertial instability, we always consider a mean flow   having some speed.  
These are examples of dynamic instabilities.  But while discussing Brunt Vaisala 
instability, we need not to take care of the mean flow.  This is example of static 
instability. 
 Based on the later, hydro dynamic instability may be of two types, viz., parcel 
instability and wave instability.  Some times perturbation may be introduced as a 
displacement to an air parcel and   it is examined under what condition the parcel is 
moving away from its mean position.  This is known as parcel instability.  Brunt-Vaisala 
instability and Inertial instability are examples of parcel instability.  In another case, the 
perturbation is given in the form of a wave super imposed on a mean flow and examined 
under what conditions the wave is being amplified.  This is known as wave instability.  
Barotropic and Baroclinic instabilities are examples of wave instability. 
 The above categorization is shown below in a tabular form: 

Hydrodynamic Instability 
Based On The State Of Mean Flow Based On The Mode Of Perturbation 
Static Instability 
Example: Brunt 
Vaisala instability. 

Dynamic Instability 
Examples: Inertial, 
Barotropic, 
Baroclinic 

Parcel Instability 
Inertial, Brunt 
Vaisala 

Wave Instability 
Barotropic, 
Baroclinic 

 
Brunt Vaisala instability: 
 
 To analyse the Brunt Vaisala instability, we consider  an air parcel embedded in a 
static mean flow.  Let the parcel be displaced vertically. 
 
If Pρ  and Eρ  are the densities of air inside the parcel and that of environmental air at 
new position then the net buoyancy force acting on the air parcel is gV PE )( ρρ − ; where 

is the volume of air parcel.  Thus considering only the buoyancy force, the vertical 
momentum equation of the air parcel is  
V
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……(1). Since pressure across the boundary of the 

parcel is continuous,  it follows that EEPP RTRTP ρρ == ; Where Tp and TE are the 
temperature of the air parcel and that of environmental air and ‘P’ is the pressure  across 
the boundary of air parcel.  
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Hence it ‘ς ’ denotes the vertical displacement, then we have 
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It is assumed that a dry air parcel follows a dry adiabatic line and a moist air parcel 
follows a saturated (pseudo) adiabatic line. Hence PΓ is either dry adiabatic lapse rate 
(DALR) or saturated adiabatic lapse rate (SALR). So we may write aP Γ=Γ ; where, ‘a’ 
stands for adiabatic, dry or saturated, whatever is applicable. 
Hence, aPP TT Γ−= ςς )0()(  (neglecting higher order terms).  
Similarly, the environmental temperature at ς=z , is given by, 

EEE TT Γ−= ςς )0()( , where, is the environmental lapse rate. EΓ
Substituting these expressions of )(ςPT and )(ςET in (2), we obtain 
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The above equation has a stable sine/cosine solution of N2 > 0 and has an unstable 
exponential solution if N2 <0. 
 
 Thus the vertical displacement of the parcel is stable if N2 > 0 i.e, if the 
environmental lapse rate is less then  the adiabatic lapse rate other wise unstable if 
environmental lapse rate exceeds that of parcel. N is known as Brunt Vaisala frequency. 
 
Inertial instability:   We consider an air parcel embedded in a mean zonally geostrophic 
flow.  Suppose, the air parcel be displaced meridionally from , to 0yy =

yyy δ+= 0 during the period 0tt = and ttt δ+= 0 .  Then at the new position, the 
horizontal equation of motion can be written as, 

dt
dyffv

dt
du

== ……(4) 
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Integrating (4) between initial and final position we obtain, 
[ ])()()()( 0000 tyttyftuttu −+=−+ δδ  

[ ] yfyyyfyuyyu δδδ =−+=−+⇒ 0000 )()( ……(6) 
Writing the equation (5) at yyy δ+= 0 , we obtain, 

[ ])()( 00 yyuyyuf
dt
dv

g δδ +−+−=  
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At the initial position the air parcel was embedded in the meanflow, which is zonaly  
geostrophic. Hence, . ( ) )( 00 yuyu g=

Thus at yyy δ+= 0 , ⎟⎟
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Multiplying both sides of (7) by )( y
dt
dv δ= and then integrating between initial and final 

position, we obtain, 

2
)( 2yf

dt
Kd

a
δς−=

′
…..(8), where, K ′ is the eddy meridional kinetic energy of the parcel 

and aς  is the absolute vorticity of the mean flow. Since the RHS of (8), represents the 
rotational K.E of the mean flow, it appears that perturbation grows by extracting 
rotational K.E of the mean flow. 
In the northern hemisphere f > 0. Thus the K.E of the parcel will increase with time if 

0<aς , i.e., if the mean flow has absolute anticyclonic vorticity and will decrease if 
0>aς , i.e., if the mean flow has absolute cyclonic vorticity and neutral if 0=aς . 

In the southern hemisphere, f < 0. Thus the K.E of the parcel will increase with time if 
0>aς , which corresponds to absolute anticyclonic vorticity in the southern hemisphere 

and will decrease if 0<aς , which again corresponds to absolute cyclonic vorticity in the 
southern hemisphere and neutral if 0=aς . 
Thus, a mean flow with cyclonic vorticity is inertially stable and with anticyclonic 
vorticity is inertially unstable. The result may be interpreted as follows: 
 A mean flow with a cyclonic absolute vorticity is itself active enough so that it 
cannot spare its energy to grow perturbation in it, where as that with an anticyclonic 
absolute vorticity is not active enough, so that it can spare its energy to the perturbation 
to grow. 
 
Barotropic Instability: 
 
Definition:  A zonal mean flow field is said to be barotropically unstable if a small 
perturbation, introduced in it, grows spontaneously by extracting kinetic energy from the 
mean flow. 
 
Barotropic instability analysis: 
 
 To, analyse the barotropic instability; we start with the non divergent barotropic 
model.  The governing equation for this is given by 
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We apply have perturbation technique, following which we split the fields into basic and 
perturbation parts as below: 
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Substituting in the above governing equation, we obtain, 
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Here, we introduce, perturbation stream function, ),,( tyxψ ′ , such that, 
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We seek the wave solution for (3) like 

)()(),,( tkxieyAtyx νψ −=′ …..(4) 
Subject to the boundary condition 

0)( =±dA ……(5) 
Substituting (4) in (3) we have 
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Multiplying both sides of (6) by *A ,  the complex conjugate of A, we obtain 
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Integrating the above with respect to ‘ ’ betweeny dy ±= , we obtain 
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Now, , where, and are respectively the real and imaginary part of the 
phase velocity  So, 

ir iccc += rc ic
'.'c ( ) ir iccucu −−=− . Multiplying the numerator and denominator 

of the integrand on RHS of (8) by the complex conjugate of )( cu − , we obtain, 
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L.H.S of the above equation is a pure real number, hence the R.H.S has to be so, which 
requires 
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Since the denominator of the integrand in (9) is a positive definite quantity, hence, it is 
always positive, Thus the above definite integral to vanish, ( )u&&−β mush change sign 
within the limit of integration.  This further requires that there must exist some point, say 

, between , such that cyy = dy ±= ( ) 0=− = cyyu&&β ……(10). This is the necessary 
condition for barotropic instability. Thus for a mean zonal flow to be barotropically  
unstable, the necessary condition is that at same intermediate latitude the mean flow has 
an extreme absolute vorticity. 
Energetics of barotropic instability: To study the energetics of barotropic instability, 
first we will show that in the non-divergent barotropic model the mean kinetic energy 
remains conserved. For that we start with non divergent vorticity equation, 

βςςςς v
y

v
x

ufV
t

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=+∇−=
∂
∂ )(.

rr
 

0. 2 =
∂
∂

+∇⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

x
V

t
ψβψ

rr
 

0.. =
∂
∂

+∇⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

∇
x

V
t

ψβψ
rrrr

 

Multiplying above by ''ψ , we obtain, 
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Integrating the above over a volume ''σ ,  consisting of  from dy −=  to , from 
bottom to top of the atmosphere and over an entire wavelength of a barotropic wave, we 
obtain, 
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Now, if KKK ′+=  , then we have,  
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. Thus, the barotropic instability grows by extracting K.E from the mean 

flow.  
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Baroclinic instability 
For a mean flow to be baroclinic unstable, first of all the mean flow should be baroclinic, 
i.e., there should exist a north-south temperature gradient in the mean. Due to that 
atmosphere possesses a certain amount of available potential energy (APE=I.E+P.E). 
Now if this existing N-S temperature gradient is increased by warming the warm latitude 
& cooling the cold latitude, then APE will go on increasing. Once APE exceeds certain 
threshold value, depending on the prevailing mean flow, the westerly flow becomes 
baroclinic unstable. This instability is demonstrated by waves super-imposed in basic 
westerly flow. Wave patterns are seen in contour field, thermal field etc., as shown in the 
figure 1.  

 
• From the figure following salient features can be seen: 

– Existing N-S temperature gradient gives rise to Zonal Available potential 
energy (AZ). 

– Waves in contour field gives rise to Nly cold air advection to the warmer 
south and Sly warm air advection to the colder north, resulting in a net 
reduction of AZ. 

– Above reduction in AZ gives rise to the generation of eddy Available 
potential energy (AE), due to east-west temperature gradient, as exhibited 
by alternative cold (K) and warm (W) region in the wave. 

– From the figure we also see divergence ahead of contour trough and 
convergence ahead of contour ridge. 

– Divergence causes cooling over ‘W’ and convergence causes warming 
over ‘K’, resulting in a net reduction in AE. 

– The above net reduction in AE is attributed to the generation of eddy 
kinetic energy (KE), required to drive the circulation in the vertical plane, 
as shown in the figure. 
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Fig.1:Baroclinic instability 
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– To compensate the net reduction in AE, there must be supply of  cold 
northerly air over cold part (K) of wave and warm southerly air over warm 
part (W) of wave. 

– The above requires that thermal trough must lag behind the contour 
trough. Then only a baroclinic wave grows.  

– It can be shown that thermal trough should lag behind contour trough by 
π/2. 

CISK (Conditional instability of second kind):  
• This instability is a combined dynamic and thermodynamic instability. 
• To understand it we consider a synoptic scale low and the atmosphere above it is 

already conditionally unstable. 
• Due to low there will be large scale moisture convergence and as the atmosphere 

above the low is conditionally unstable, the moist air being positively buoyant 
will rise, cool and condense. 

•  The latent of condensation will cause divergence at upper level, which in tern 
will enhance low level moisture convergence. 
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Fig2. 
CISK 
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• The enhanced low level moisture convergence in tern will again enhance heating. 
• Thus there is a co-operative mutual interaction between large scale moisture 

convergence and cumulus scale heating. 
• The above gives rise to a different type of instability, known as CISK.  
• The above has been explained schematically in fig.2. 
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